rotation of freshly dissolved crystalline fructose. It is thus proved to have the same cause as the mutarotation reaction, namely, the slow establishment in solution of the equilibrium between the α and β forms of the sugar.

From the stereochemical theory a formula is deduced which allows the calculation of the rotatory power of the unknown forms of many of the natural and synthetic glucosides. From these calculated values the theory permits a calculation of the influence of the end groups of the glucosides on the rotatory power of the asymmetric carbon atom to which they are attached. The results, which are shown in the figure, indicate that the influence of the group is chiefly due to its weight, and that the rotation of the affected carbon atom changes greatly with the weight for introduced groups of small weight but is constant for those of large weight.

The specific rotations of the unknown α - d-fructose and the unknown forms of mannose, maltose, melibiose, xylose, and lyxose are calculated.

[Phoenix Physical Laboratory Contributions, No. i7.]

THE CHANGE IN REFRACTIVE INDEX WITH TEMPERATURE. I.

By K. George Falk.

Received September 28, 1908.
A considerable amount of work has been done on the determination of the refractive indices of a number of organic liquids at different temperatures. ${ }^{1}$ Brühl and W. H. Perkin used this change in refractive index with change in temperature as a means of following the equilibrium between the two forms of certain tautomeric substances. Their results in some instances do not agree.:

It was decided, therefore, to attempt to follow these changes more carefully by determining the refractive indices for the sodium and the three hydrogen lines at intervals of 2° or 3° over a range of 50° or 60°, using the purest chemicals obtainable and samples from different sources when possible. In order to be able to judge whether the changes observed with tautomeric substances were normal or not, it was necessary to follow the changes in the refractive indices of other substances with
${ }^{1}$ Landolt-Bornstein-Meyerhoffer's 'Tabellen give a very complete summary.
${ }^{2}$ Perkin, in his paper on "Influence of 'Temperature on the Refractive Power and on the Refraction Equivalents of Acetylacetone and of Ortho- and Para-toluidine," J. Chem. Soc., 69, I, concludes with: "It would seem, therefore, that there must be some unnoticed source of error in the refractometer used by Brühl, when it is employed for temperatures somewhat above those of the atmosphere." Brühl in "Studien über Tautomerie," J. pr. Chem., 50, 192, referring to the fact that the molecular refraction of acetylacetone as determined by Perkin decreased with rise in temperature, whereas his own experimental observations showed it to increase, remarked: "Worauf diese Widerspruclie beruhen, vermag iclı nicht zu erklären."
change in temperature just as carefully, in order to find the general course of the phenomena in question.

In this paper, the method of working is briefly described first, then the experimental results obtained so far are given, then some theoretical conclusions following directly from these results will be discussed, and finally some observations on ethyl acetacetate will be spoken of.

Apparatus and Method.-Thanks to the kindness of Professor J. L. R. Morgan, it was possible to use in this investigation a Pulfrich refractometer with the arrangement for heating the liquid to be studied, belonging to the Department of Physical Chemistry. The heating spirals, etc., supplied with the apparatus were used, and since refractometers of this type have been described a number of times, especially recently in great detail by C. Chéneveau, ${ }^{1}$ who used among other refractometers one exactly similar to the one used here, only a few points in connection with its use will be mentioned. The refractive indices were obtained for the sodium $\left(D_{1}\right)$ and the three hydrogen (C, F, and G^{\prime}) lines compared to air at about 20°. The thermometers used read to tenths of a degree, one between 0° and 50°, the other between 50° and 100°. Since the measurements were made over a fairly large range of temperature, it may be possible that the substance was not always at the temperature indicated by the thermometer, or that there may be a lag in the refractive index on account of which the true reading could only be obtained after some time. These sources of possible error were overcome by taking the readings at different intervals of time after the thermometer had become stationary, sometimes making a measurement after a few minutes, in other cases waiting an hour or more, and also by making the measurements around 40° (for instance) in one case by heating from the room temperature upward, and in the other by heating to a higher temperature for some time and then allowing to cool to the lower temperature. No attempt was made to take the readings at any one fixed temperature determined upon beforehand, but the readings were taken at the points for which the heating conditions for the time being gave a constant temperature. The time of taking the four readings occupied generally less than two minutes, and the temperature was read both before and after. The temperature did not remain constant to a tenth of a degree for considerable lengths of time, but did within a degree for an hour or more, while for the time required for the readings it remained practically constant. In this way, it is hoped, constant errors were avoided and by taking a sufficient number of readings between about 20° and 75° and plotting the results, the true course of the change within these limits of temperature could be determined. The record of the temperature and the time was of course carefully kept, but will not be given here as no general effect was notice-

[^0]able except in one case (ethyl acetacetate). Corrections for the zero point were introduced. The corrections for the prism at different temperatures were taken from the tables fumished by Zeiss.

The substances for which the measurements were made were diisoamyl, dimethylaniline, n-heptyl alcohol, benzyl alcohol, n-butyric acid, and the tautomeric substances acetylacetone and ethyl acetacetate. The choice of substances may seem peculiar, but in order to find the general course of the change under investigation it was desirable to use as many different classes of substances as possible and in picking out the individual member of each class to study, those substances with high boiling points lying close together were cliosen, since this investigation will be extended to mixtures (in varying proportions) and their refractive indices at different temperatures, as more light, probably, will be thrown on the state of the tautomeric substances under these conditions than in the study of the pure liquids. The substances obtained from Kahlbaum were measured as received and aiter distillation, practically the same results being obtained in the two cases. The other substances were distilled before they were used in some cases, in others not. The boiling points given are not intended to represent accurately the true temperatures, as the thermometer used was not calibrated carelully and the pressures were not determined, but are only given to show the constancy of the temperatures at which tlie substances distilled.

The densities were determined with an Ostwald pycnometer which had been used by Dr. Eric Higgins. ${ }^{\text {I }}$ Some time was saved by using the calibration curve for different temperatures as carefully determined by him. The densities are compared to the density of water at 4° and the results of others recalculated to this basis when necessary, when used for comparison.

Experimental Results.

In this section the results for diisoamyl, dimethylaniline, n-heptyl alcohol, benzyl alcohol, n-butyric acid, and acetylacetone will be given. On plotting the refractive indices against the temperatures and drawing curves, it was found that for all four lines, as well as for the densities for these substances, the smoothed curves are straight lines in every case. All points naturally do not lie on the curves, but the difference is not greater in any case than the difference between two experimental results. The curves are not reproduced in this paper since the scale on which they would have to be drawn would not show the details satisfactorily. It may suffice to give all the experimental determinations liere and the equations which represent the curves for all the cases. 'The results will be tabulated as follows:

[^1]The refractive indices determined for the $\mathrm{C}, \mathrm{D}, \mathrm{F}$ and G^{\prime} lines.
The densities determined.
The five equations representing the curves.
The experimental results of others compared with those calculated for the required temperatures from the equations.

The changes in the refractive indices and in the density for I° as calculated from the equations.

The dispersions for 10° and 80° calculated from the equations.
Strictly speaking, the curves hold only as far as experiments have been made as regards the temperature, but it seems fair to extend them a short distance above and below. The dispersions (and later in the theoretical part, the refractive powers) have therefore been calculated for 10° and for 80°, in all probability without introducing any sensible errors. The dispersions have been taken from the curves and not from the experiments directly, since the latter may contain the errors due to two series of experiments, while the former eliminate to a great extent these accidental errors.

	DIISOAMYL.			
t.	C.	D.	F.	G^{\prime}.
21.2	I. 40589	I. 40793	1.41303	I. 41742
22.3	530	739	243	666
$23 \cdot 3$	512	717	226	653
25.1	413	6 II	125	547
25.8	378	587	096	532
30.0	199	399	I. 40907	345
32.6	085	291	797	227
36.2	I. 39937	137	635	059
36.8	912	II2	617	041
40.5	7.54	I. 39948	442	I. 40859
43.0	661	85 I	347	765
45.8	515	716	204	641
47.9	418	623	I I I	509
49.9	331	533	026	429
51.6	249	44^{2}	I. 39930	357
52.0	235	423	907	339
53.7	143	354	835	269
57.9	I. 38963	160	646	085
6 I .0	829	OI7	509	I. 39948
67.0	529	I. 38729	2 II
72.9	265	463	1. 38936	370
Kahlbaum's redistilled, b. $156.5{ }^{\circ}-7.0^{\circ}$ (uncorr.).				
t.	C.	D.	F.	G^{\prime}.
22.5	I. 40536	I. 40738	I. 41254	I. 41687
23.2	502	702	215	651
26.0	388	588	102	527
30.7	190	384	1.40895	325
37.6	I. 39896	093	593	016
$43 \cdot 7$	634	I. 39815	326	I. 40743

t.	c.	D.	F.	G^{\prime}.
46. I	508	687	190	618
5 I .2	281	47	I. 39965	390
54.7	1 II	313	800	235
58.2	1. 38950	160	627	048
62.9	742	I. 38932	420	I. 39844
67.3	541	718	223	. . .
70.3	4 IO	598	089	5 I 8
Density.				
	Vol. in ce.		Wt. in grams.	d_{4}^{t}
$23 \cdot 3$	10.0170		7.225	0.7213
23.5	10.0171		7.224	0.7212
34.4	10.0191		7.142	0.7128
$43 \cdot 5$	10.0209		7.071	0.7056
49.9	10.0220		7.024	0.7008
56.8	10.0233		6.973	0.6956
62.9	10.0245		6.926	0.6909
70.1	10.0258		6.870	0.6852

$(\mathrm{I} a)$	$n_{c} / \mathrm{I} .4 \mathrm{I} 537+t / 3187 . \mathrm{I} 75$	$=$	I	
$(\mathrm{I} b)$	$n_{\mathrm{D}} / \mathrm{I} .4 \mathrm{I} 750$	$+t / 3173.24$	$=$	I
$(\mathrm{I} c)$	$n_{\mathrm{F}} / \mathrm{I} .42280+t / 3127.03$	$=$	I	
$(\mathrm{I} d)$	$n_{\mathrm{G}} / \mathrm{I} .42710+t / 3143.39$	$=$	I	
$(\mathrm{I} e)$	$d / 0.7392+t / 960$	$=$	I	

Density

	t.	Found.	Calc.
Schiff ${ }^{1}$.	$9.8{ }^{\circ}$	0.7358	0.7317
Lachowicz ${ }^{2}$.	$22 .{ }^{\circ}$	0.72156	0.7223
Just ${ }^{3}$.	$22 .{ }^{\circ}$	0.7463	0.7223

Change per degree..... 0.000444

$$
\begin{array}{rrrr}
0.0004467 & 0.000455 & 0.000454 & 0.00 \\
D-C . & F-D, & G^{\prime}-F . \\
\cdots 0.00210 & 0.00522 & 0.00430 \\
\ldots 0.00191 & 0.00464 & 0.00437
\end{array}
$$

0.00077

Dispersion, 10°
Dispersion, 80°

Dimethylaniline.

Merck's (mono-free), undistilled.

t.	C.	D.	F.	G^{\prime}.
17.6	I. 55296	I. 55968	1. 57765	I. 59489
20.0	171	840	631	320
25.4	1. 54917	574	368	I. 58975
30.1	685	345	124	802
34.0	491	160	I. 56930	639
43.7	023	I. 5468 I	417	067
52.9	I. 5355%	201	1. 55935	I. 57589
63.1	038	I. 53695	390	OI 3 (?
64.1	008	655	356	044 (?)
71.3	I. 52620	259	I. 54965	1. 56582 (?)

${ }^{1}$ Ann., 220, 88 (1883).
${ }^{2}$ Ibid., 220, 172 (1883).
${ }^{3}$ Ibid., 220, 156 (1883).

Kahlbaum's, undistilled.

t.	c.	D.	F.	G.
17.9	I. 55279	I. 55953	I. 57752	I. 59433
18.0	282	952	744	430
18.6	255	925	720	395
20.0	172	835	629	339
21.0	143	817	596	268
27.0	I . 54830	480	323	I. 58943
30.7	668	326	134	775
30.8	656	304	096	755
37.9	297	1. 54948	I. 56716	365
42.0	098	749	508	142
45.7	1. 53906	542	303	I. 57935
55.8	429	078	I. 55820	454
56.2	412	052	766	403
62.1	125	I. 53760	489	092

Kahlbaum's redistilled, b. 189.5° (uncorr.).

t.	C.	D.	F.	G^{\prime}.
18.4	1.55250	I. 55914	I. 57710	I. 59422
24.6	1. 54959	620	396	059
27.1	847	502	267	I. 58954
32.5	570	230	I. 36989	651
34.8	448	O9I	87 I	526
37.9	284	I. 54945	700	368
41.5	103	758	517	172
44.4	1. 53962	607	367	006
47.3	806	443	207	1. 57783 (?)
49.4	721	365	IoI	753
52.3	603	259	1.55991	612
52.6	586	238	960	578
58.9	265	I. 53915	626	331 (?)
59.3	256	898	614	239 (?)
64.3	1. 52988	627	334	009 (?)
65.3	931	581	281	1.56900 (?)
65.8	911	555	263	882 (?)
67.3	827	467	180	825 (?)
67.7	806	45^{6}	154	842 (?)
69.6	724	351	050	696 (?)
73.4	511	156	I. 54842	447 (?)

The determination of the G^{\prime} line, especially at the higher temperatures, was rendered difficult by the yellow color of the dimethylaniline.

Density.

t.	Vol. in cc.
2 I .3	10.0167
36.2	10.0195
43.3	10.0208
53.4	10.0227

Wt. in gms	\boldsymbol{d}_{4}^{t}.
9.567	0.955 I
9.448	0.9429
9.390	0.937 I
9.3 IO	0.9289

t.	c.	D.	F,	G^{\prime}.
46.8	216	410	I. 41927	373
48.5	138	32 I	853	3 II
51.2	042	230	741	17 I
$54 \cdot 3$	I. 40904	104	614	095
56.5	836	034	546	1. 41968
59.5	708	I. 40912	410	844
62.3	613	816	310	737
65.9	466	668	162	613
69.1	350	552	035	497
72.8	192	390	I. 40894	343

Kahlbaum's redistilled, b. $172.5-3.0^{\circ}$ (uncorr.).

22.4	I. 42 I 16	I. 42326	I. 42843	1. 4328 I
22.7	088	297	823	263
24.4	043	242	770	196
27.7	1.41905	105	627	084
$34 \cdot 5$	622	I.4182I	340	I. 42772
41.3	370	575	090	535
48.4	075	295	I. 41797	239
55.5	I. 40869	060	573	042
6I. 7	6 I 5	I. 40828	33 I	I. 41775
71.5	235	422	I. 40937	397
		DENSIT		

t.		Vol. in ce.		Wt. in gms.			d_{4}^{t}
25.5		10.0175		8.196			0.8182
35.1		10.0193		8. I3I			0.8115
43.7		10.0209		8.070			0.8053
5 I .7		10.0224		8.014			0.7996
61.3		10.0242		7.946			0.7927
68.4		10.0255		7.895			0.7875
	(3a)	$n_{c} / \mathrm{I} .42952$	$+$	$1 / 3788.42$	$=$	I	
	(3b)	$n_{D} / \mathrm{I} .4314 \mathrm{I}$	$+$	$t / 3867.43$	$=$	I	
	(3c)	$n_{\text {r }} /$ I .43693	+	$t / 3722.62$	$=$	I	
	(3d)	$n_{\mathbf{G}}$ / $/$. 44144	$+$	$t / 3729.48$	=	I	
	(3e)	$d / 0.8364$	+	$t / 1173.87$	"	I	

		C.		F,	
	$\begin{gathered} t . \\ 16.5 \end{gathered}$	Found. I. 42343	Calc. I. 42329	Found. I . $430^{\circ} 9$	Calc. I. 43056
Eijkmann ${ }^{1}$.		I. 42343	I . 42329	1.43079	

d	
Found.	Ca1c.
0.8235	0.8246
0.8300	0.8257
0.8228	0.8182
0.8355	0.8364
0.838	0.8364
0.829	1.8250
0.82 I	0.8172

[^2]

Benzyl Alcohol.
Kahlbaum's, undistilled.

t.	C.	n.	F.	(${ }^{\circ}$
21.4	1. 53529	I. 5401 I	I. 5.52 .51	1. 56,325
21.6	523	009	241	327
22.0	50,5	1.53979	208	290
22.1	498	972	201	28.
24.6	398	385	113	194
27.8	268	748	1. 54978	061
30.9	O90	. 562	773	I. 5.5840
. 33.2	1.52910	374	602	67.5
37.7	700	17%	S82	450
40.7	566	0.5	261	333
43.7	453	I. 52929	125	202
46.3	3.55	830	033	II 4
48.5	2.59	7.38	I. $5.393{ }^{\circ}$	015
. 50.6	18 I	6.59	860	1.54948
60.7	1.51809	291	474	550
63.9	708	196	354	44^{2}
65.8	652	128	322	389
60.4	493	1. 51951	126	20.3

Kahlbaum's redistilled, b. $199.3^{-9} .8^{\circ}$ (uncorr.).
t.
24.5
2.5 .6
28.2
, 30.0
$33 \cdot 4$
36.8
38.8
42.5
46.3
49.
52.
55.
58.9
63.
64.
66.4
73.2
21.5
22.0
22.1
32.4
37.6

6
C.
D.
F.
G^{\prime}.
I. 53347
I. 53833

1. 5.5058
2. 56138

801
035
II4
7021.54925000
$\because 20$
625
850
I. 5.5940
$467 \quad 708$
I. 52999 465
$\begin{array}{lll}339 & 573 & 657 \\ 248 & 472 & 549\end{array}$
874

08730238
$\begin{array}{llll}395 & 1.52870 & 07.5 & 14.5\end{array}$
27
$7 \begin{array}{lll}7.34 & 1.53938 & 1.54909\end{array}$
63% 59 862
523 70\% 700
$.6(0) \quad 55^{8} \quad 619$
$214 \quad 409 \quad 469$
$129 \quad 323 \quad 384$
$069 \quad 252 \quad 314$
I. $5 \mathrm{I} 599 \quad 1.52982035$

Merck's redistilled, b. $200.5^{-1.0^{\circ}}$ (uncorr.).

21.5	1.53500	1.53987	1.55228	1.56208
22.0	463	943	175	2.59
22.1	458	938	175	2.53
32.4	1.529 .51	418	1.54652	1.55723
37.6	712	179	398	476

t.	c.	D.	F.	G^{\prime}.
42.0	527	000	202	288
47.7	424	I. 52897	114	180
54. I	132	604	I. 53795	I. 54872
56.2	040	503	704	778
60.0	I. 51890	355	541	608
63.5	759	228	425	493
67.6	594	064	266	328
6.	Vol. in ce,	Density	Wt, in gms.	d_{4}^{i}.
22.4	10.0169		10.477	I. 0459
32.9	10.0189		10.399	I. 0379
40.2	10.0202		10. 341	I. 0320
53.0	10.0226		IO. 245	I. 0222
57.8	10.0235		10. 208	I. OI84
63.6	10.0246		IO. 163	I. OI 38
71.4	10.0261		10. 104	I. 0078
23.1	10.0170		10. 466	I. 0448
40.3	10.0202		10. 335	I. 0314
51.5	10.0223		10.249	I. 0226

The benzyl alcohol showed a tendency to dissolve the cement binding together the glass cup and the prism, causing considerable annoyance at times.

(4a)	$n_{\mathrm{c}} / 1.54407$		$t / 3^{611.99}$	$=\mathrm{I}$	
(4b)	$n_{D} / 1.54875+$		$t / 3644.12$	$=$	
(4c)	$n_{F} / 1.56160+$		$t / 3549.09$	$=$	
(4d)	$n_{G^{\prime}} / \mathrm{I} .57259+$		$t / 3494.67$	$=$	
(4e)	d/I.06I6		$t / 1415.47$	$=$	
	c.			D.	
Brühl ${ }^{1}$.	$\begin{array}{r} t \\ 20 . \end{array}$	Found, $\text { I. } 53474$	$\begin{aligned} & \text { Calc. } \\ & \text { I. } 53552 \end{aligned}$	Found. $\text { I. } 53955$	$\begin{gathered} \text { Calc. } \\ \text { I. } 54025 \end{gathered}$
Eijkmann ${ }^{2}$.	I9.8	I. 5354 I	I. 53560	
	F.			G^{\prime}	
Brühl.	$\begin{gathered} t . \\ 20 . \end{gathered}$	Found. $\text { I. } 55 \mathrm{I} 78$	$\begin{aligned} & \text { Calc. } \\ & \text { I. } 55277 \end{aligned}$	Found. $\text { I. } 56232$	$\begin{gathered} \text { Calc. } \\ \text { I. } 56353 \end{gathered}$
Eijkmann...	I9. 8	I. 5525 I	I. 55288
			d		
	t.		Found.		Calc.
Brühl ${ }^{1}$.		20.			$\text { I. } 0467$
Eijkmann ${ }^{2}$.		. 19.8	1.0429		I. 0466
Perkin ${ }^{3}$.		4.	I. 0579		I. 0585
		Io.	1.0531		I. 0541
		20.	I. 0450		I. 0466
		30.	1.0371		I. 0391
		40.	I. 0293		I.0316
		50.	I. O2I 5		I. 024 I
		60.	I. OI 33		I. OI 66
		70.	I. 0050		1.0091
		80.	0.9966		I. OOI6

Kahlbauni's redistilled, b. I60 ${ }^{\circ}$ (uncorr.).

20.3	I. 39582	1.397\%	1.402\% I	I 40685
23.0	459	662	157	567
31.1	IGI	364	I. 39850	255
32.7	093	291	75	...
37.5	1. 38902	104	587	1.39994
41.4	743	1. 38944	433	826
4.5 .4	567	76	243	662
48.8	426	622	101	512
52.7	288	485	I. 38960	363
57. 3	124	319	794	193
$59 \cdot 3$	0.55	244	714	112
63.8	1. 37846	05.5	506	1. 38920
66.2	735	I. 37935	$4{ }^{4} 4$	78.5
72.1	497	670	142	5.55

Density.

t	Vol. i11 ce
24.7	IO.O17.3
32.4	10.0188
40.8	10.0203
48.0	10.0217
58.8	10.0237
67.4	10.0254

Wt. in gins.
in ${ }_{4}^{t}$
$9.5 .50 \quad 0.95 .34$
9.475 0.9457
$0.392 \quad 0.9373$
$9.322 \quad 0.9302$
$9.220 \quad 0.9108$
9. $\mathbf{I} 36$ O.9II3

The same difficulty was experienced in the determination of the refractive indices as with benzyl alcohol, the binding material being attacked.

	(5a)		$40392+$	t/3523.02	$=$	I	
	(5b)		40580	$t / 3558.99$		I	
	$(5 c)$		$41077+$	$t / 3540.21$	$=$	I	
	$(5 d)$		41508	$t / 3502.60$	$=$	-	
	(5e)		9777 +	$t / 992.640$	$=$	I	
		C.			D.		
		t.	Found.	Calc.		Found.	Calc.
Brühl ${ }^{1}$			I. 39578	I. 39595		I. 39789	1. 39790
Landolt ${ }^{2}$.			I. 39554	I. 39595	
Eijkmann ${ }^{\text {a }}$.		19.1	I. 398 II	I. 3963 I		
" .		80.9	I. 37205	I. 37168			
Scheij ${ }^{4}$.		20.				I. 39906	1. 39790
			F.		G^{\prime}		
		t.	Found.	Calc.		Found.	Calc.
Brühl.			I. 40280	I . 40280		I. 40691	1.40700
Landolt.			I. 40246	I. 40280		I. 40649	1.40700
Eijkmann.		19.1	1.40512	I. 40316			
" .		80.9	I. 37852	I. 37853			

		d.	
	4.	Found.	Calc.
Brühl ${ }^{1}$		0.9587	0.9580
Landolt ${ }^{2}$.	20.	0.9594	0.9580
Eijkmann ${ }^{3}$.	19. 1	0.9599	0.9589
"	80.9	0.8983	0.8980
Scheij ${ }^{4}$.		0.9590	0.9580
Winkelmann ${ }^{5}$.	20.	0.9603	0.9580
Traube ${ }^{\text {® }}$.		0.9624	0.9580
Perkin ${ }^{7}$.	I5.	0.9662	0.9629
"		0.9560	0.953 I
Lüdeking ${ }^{8}$.	25.	0.952 I	0.9531

	C	D.	F.	G^{\prime}	d.
Change per degree.... 0.0003985	0.000395	0.0003985	0.000404	0.000985	

	$D-C$.	$F-D$.	$G^{\prime}-F$.
Dispersion, $10^{\circ} \ldots \ldots \ldots \ldots$	o.00191	0.00493	0.00426
Dispersion, $80^{\circ} \ldots \ldots \ldots \ldots .0 .00216$	0.00466	0.00390	

```
I Ann., 203, I9 (1880).
2 Pogg. Ann., 122, 545 (1864).
* Rec. trav. chim., 12, 157(1893).
4 Ibid., 18, 169 (1899).
5 Ann. Physik [2], 26, II3 (1885).
' Ber., I9, 885 (I886).
7 J. pr.Chem., 32, 530 (1885).
8 Ann. Physik [2], 27, 76 (1886).
```


Acetylacetone.

Kahlbatım's undistilled.

t.	c.	D.	F.	G^{\prime}.
26.3	I. 44114	I . 44566	I . 4580 I	I . 46951
29.2	I. $4393{ }^{1}$	378	604	746
31.7	780	223	438	586
33.7	653	097	299	4.37
36.6	501	1. 43936	13.5	27.5
39.5	426	866	060	194
43. I	231	663	1. 44855	1. 45990
46.8	O35	463	640	762
48.4	I. 42943	378	545	655
50.6	841	275	440	532
$54 \cdot 3$	711	142	271	372
58.8	462	1.42890	010	104
61.0	333	763	1. 43880	I. 44963
64.5	145	573	668	749
67.7	I. 41967	386	489	5.57
7 7 .6	756	16 I	253	333
74.6	577	1.41969	O7I	144

Kahlbaum's redistilled, b. $136.5-7.0^{\circ}$ (uncorr.).

t.	c.	D.	F.	G^{\prime}.
25.6	I. 4419 I	I 44649	1.45880	1.4;028
27.4	056	511	737	1.46881
27.8	O68	517	751	893
28.1	017	467	699	846
29.7	1. 43948	391	622	770
3 I . 1	872	324	540	681
$34 \cdot 5$	626	092	277	42 I
36.2	569	002	212	349
38.2	503	I. 43937	149	286
42.2	226	679	1. 44845	1. 45987
46.2	025	457	630	754
48.1	1. 42928	371	512	624
51.9	685	102	255	369
55.8	505	1.42918	069	181
57.9	434	877	I. 43984	085
62.4	I 34	562	670	1.44782
65.5	070	506	369	65.3
69.1	I. 41814	218	322	417
73.6	622	047	092	168

Sample from Chemical Museum, distilled; b. $137-8^{\circ}$.

25.5	I .44 I 93	I .44649	I .45892	I .47 O 30
26.3	134	587	822	I .46962
30.7	I .43857	301	527	673
34.9	660	093	272	412
45.7	058	1.43492	I .44668	1.45787

Density.

t.	Vol. in cc.	Wt. in gms.	d_{4}^{t}.
23.7	10.0171	9.746	0.9729
32.0	10.0187	9.668	0.9650
42.1	10.0206	9.570	0.9550
50.9	10.0222	9.486	0.9465
64.4	10.0248	$9 \cdot 358$	0.9335
72.0	10.0262	9.285	0.9261
28.6	10.OI80	9.598	0.9681
38.7	10.0199	9.600	0.958 I
52.0	10.0224	9.473	0.9452
65.8	10.0250	9.343	0.9320

| $(6 a)$ | $n_{\mathrm{C}} / \mathrm{I} .45520+t / 2745.47$ | $=\mathrm{I}$ |
| :--- | :---: | :---: | :---: |
| $(6 b)$ | $n_{\mathrm{D}} / \mathrm{I} .45987+t / 2703.32=$ | I |
| $(6 c)$ | $n_{\mathrm{F}} / \mathrm{I} .47305+t / 256 \mathrm{I} .83=$ | $=\mathrm{I}$ |
| $(6 d)$ | $n_{\mathrm{G}} / \mathrm{I} .48489+t / 2538.2 \mathrm{I}=$ | I |
| $(6 e)$ | $d / 0.9948+t / 104 \mathrm{I} .83=$ | I |

	t.	c.		D.	
		Found.	Calc.	Found.	Calc.
Brühl ${ }^{1}$.	16.7	1.44927	I. 44678	I. 45409	0.45077
	I8.I	I. 44837	I. 44597	I. 45314	1. 45002
	42.7	I. 44102	I. 43220	I. 44557	I. 43674
	72.4	I. 43046	I. 41683	I. 43497	I. 42070
Perkin ${ }^{2}$	6.5	I. 45459	I. 45175
	8.0	I. 45390	I. 45096	. $\cdot \cdot \cdot$. . . \cdot
	9.5	I. 45270	1.45016	. . . ${ }^{\text {d }}$
	II .	I. 450067	I. 44937	I. 454957	I. 45385
	I5.5	I. 44930	I. 44735	. . . \cdot	. . \cdot.
	99.0	I. 40240	I. 40273		
	99.2	I. 40210	I. 40262		
	99.3	I.40032	I. 40257	I. 404135	1.40617
		F.		G^{\prime}	
	t.	Found,	Calc.	Found.	Calc.
Gladstone ${ }^{3}$.	18. 4	I. 4678	I . 46247		
Perkin.	6.5	I. 47259	I . 4693 I	I. 48524	1.48109
	8.0	I. 47200	I. 46845	I. 4845 I	I. 4804 I
	9.5	I. 47053	I. 46759	I.483I5	I. 47973
	II.	I. 46757 I	I. 46672	I. 479223	I. 47905
	15.5	I. 46718	I. 46414	I. 47939	I . 47701
	99.0	I. 41656	I. 41612	I. 42605	I . 42698
	99.2	I. 41604	I. 41601	I. 42555	I. 42686
	99.3	I. 414139	I. 41595	I. 4235 I 8	I. 42680

${ }^{1}$ J. pr. Chem. [2], 50, 119 (1894).
${ }^{2}$ J. Chem. Soc., 62, $844 ; 69,3$.
${ }^{3}$ Ibid., 59, 290 (I89I).

Theoretical.

In discussing the refractive powers of difierent substances, the three expressions

$$
\text { I }\left(n^{2}-\mathrm{I}\right) / d \quad \text { II }(n-\mathrm{I}) / d \quad \text { III }\left(n^{2}-\mathrm{I}\right) /\left(n^{2}+2\right) d
$$

have been chiefly made use of at different periods, although the first two have been discarded to a great extent in favor of the last in recent times. The question of the constancy of these expressions with change in temperature or pressure is an important one and has been treated of often. Without entering in any way into the theoretical bases underlying these expressions and without introducing any new conceptions except those based on the experiments just described, or later speaking of possible explanations, it may be of interest to see to what the introduction of these results into the expressions may lead. As shown in the experimental part, the relation between the refractive index and the temperature (as

[^3]well as between the density and the temperature) can best be expressed by straight lines or their equations within certain limits of temperature for the substances used. Denoting the relation between the refractive index and the temperature by the equation $n / a+t / b=\mathrm{I}$ and that between the density and the temperature by the equation $d / a^{\prime}+t / b^{\prime}=\mathrm{I}$ in which n denotes the refractive index for a given line; t, the temperature; a, b, constants for any one substance for one line within certain limits of temperature; and a^{\prime}, b^{\prime}, constants for the substance depending upon the density; and substituting the values for n and for d from these equations in the expressions for the refractive powers and simplifying, the following are obtained:
I. $\quad \frac{n^{2}-\mathrm{I}}{d}=\frac{(a-a t / b)^{2}-\mathrm{I}}{a^{\prime}-a^{\prime} t / b^{\prime}}=\frac{b^{\prime} a^{2}}{a^{\prime} b^{2}}\left[-t+2 b-b^{\prime}+\frac{\left(b-b^{\prime}\right)^{2}-b^{2} / a^{2}}{b^{\prime}-t}\right]$

The term outside the brackets is constant. As t increases, of the expression inside the brackets, $-t+2 b-b^{\prime}$ decreases, while the fraction increases, since b^{\prime} is always greater than $t\left(b^{\prime}\right.$ in words denoting the temperature at which the substance would have zero density if the linear relation held). With increasing t, the first part of the expression within the brackets will have the preponderating influence, and therefore the expression I will decrease as the temperature is increased.

$$
\text { II. } \quad \frac{n-\mathrm{I}}{d}=\frac{a-a t / b-\mathrm{I}}{a^{\prime}-a^{\prime} t / b^{\prime}}=\frac{a b^{\prime}}{b a^{\prime}}+\frac{b^{\prime}}{a^{\prime} b} \cdot \frac{a b-a b^{\prime}-b}{b^{\prime}-\bar{t}} \text {. }
$$

The first term is constant; as t increases, the second term will increase, and if the numerator is positive (or $a b-a b^{\prime}-b>0$) ($n-\mathrm{r}$) $/ d$ will increase, if negative (or $\left.a b-a b^{\prime}-b<0\right),(n-1) / d$ will decrease, while if $a b-a b^{\prime}-$ $b=o,(n-1) / d$ will be constant and equal to $a b^{\prime} / b a^{\prime}$.
III. $\frac{n^{2}-\mathrm{I}}{\left(n^{2}+2\right) d}=\frac{(a-a t / b)^{2}-\mathrm{I}}{(a-a t / b)^{2}+2} \cdot \frac{\mathrm{I}}{\left(a^{\prime}-a^{\prime} t / b^{\prime}\right)}=$

$$
\frac{b^{\prime}}{a^{\prime}\left(b^{\prime}\right.}=\left[\mathrm{I}-\frac{3 / a^{2}}{(\mathrm{I}-t / b)^{2}+2 / a^{2}}\right] .
$$

As t increases, the fraction without the brackets increases. Since $t / b<1$ as t increases ($\mathrm{I}-t / b$) decreases, $(\mathrm{I}-t / b)^{2}$ decreases, the denominator of the fraction within the brackets decreases, the fraction increases, and the expression within the brackets decreases. The value of III therefore as t increases may increase or decrease or remain constant, depending upon the relative values of the term within and the term without the brackets.

The constancy of the three expressions (I, II and III) with increasing temperature depends therefore upon the values of the four constants, a, b, a^{\prime}, and b^{\prime}, or on the slopes of the curves, or in other words, upon the relative values of the temperature coefficients of the refractive index and the density.

The refractive powers of the six compounds studied for the C and G^{\prime}
lines as calculated fron the three expressions are siven below at intervals of ten clegrees from110 10° (o) 80°.

Difsoamyz.

	${ }^{\prime \prime}{ }_{C}$	d.	$\left(n_{c}^{2}-1\right) \cdot \alpha$.	$\left(n_{c}-1\right) / d$.	$\left(\mu_{c}^{2}-1\right) /\left(n_{c}^{2}+2\right) d$.
10°	I . 41093	0.7315	I. 3544	-. 5618	0.3393
20°	1.40649	0.7238	1. 3.515	0.3616	0.3397
30°	1.40205	0.7161	1. 3486	0.56 I 4	-. 340 I
40°	1. 3976 I	0.7084	I. 3457	0.5612	0.3404
50°	1. 39317	0. 3007	I. 3425	0. 56 II	0.3407
60°	1. 3887.3	0.6930	I. 3398	0.5609	0.3410
70°	1. 38429	0.685 .3	1.3370	0.3608	0.3 .414
8180	1.37955	0.659	1.3.341	0.5606	0.341%

$\left(a b-a b^{\prime}-b=-34.00\right)$

Dimethylaniline.

	${ }^{\prime}{ }^{\prime}$	1.	$\left(n_{c}^{2}-\tau\right)(d$.	($\left.{ }_{c} c^{-I}\right) / d$.	$\left(u_{c}^{2}-1\right)\left(n_{c}^{2}+2\right) d$.
10°	1.5 .5680	0. 9648	1.4756	0.5771	0.3335
20°	1.5358	0.9566	1.4721	0.5769	0. 3339
30°	1. . 54600	0.9484	I. 4685	0.5765	o. 3343
40°	1. 54195	0.9401	1. 4654	0.5765	0.3347
50 0°	1. 53700	0.9318	1.4621	0.5763	0.335 I
60°	1. 5320.5	0.9230	1.4.586	0.5-61	0.3355
70°	1.52710	0.9153	I. 4553	0.5759	0. 33.59
80°	1.52215	0.9000	1.4520,	0.575\%	0. 3.363

$\left(a b-a b^{\prime}-b=-69.6,6\right)$

	" G^{\prime}.	$\left(n_{\mathrm{G}^{\prime}-1}^{2}\right) h . /$	$\left(n_{G^{\prime}}-1\right) \ldots$.	
10°	1. 59888	1.6129	0.6206	0. 3.370
20°	1.59330	1. 6087	0.6203	0.3544
,30 ${ }^{\circ}$	1.58800	1.6046	0.6200	0. 3.548
40°	1.58261	1.6005	0.6197	0. 3553
50	1.57\%29	I. 5964	0.6194	0. 3.355°
60°	1. 571 SS ;	1. 5923	0.6191	0. 3563
760	1. .56644	1.5882	0.6188	0. 3569
30°	1.5610 .5	I. 584 I	0.6185	0. 3.3575

n-Heptyl Alcohol.

	n_{c}.	d.	$\left(n_{c}^{2}-\mathrm{I}\right) / d$.	$\left(n_{c}-1\right) / d$.	$\left(n_{c}^{2}-1\right) /\left(n_{c}^{2}+2\right) d$.
10°	I. 42575	0.8293	I. 2453	0.5134	0.3088
20°	I. 42198	0.822 I	I. 2432	0.5133	0.3091
30°	I. 41820	0.8150	I. 2408	0.5131	0.3093
40°	I. 41443	0.8079	I. 2385	0.5130	0.3096
50°	I. 41065	0.8008	I. 2362	0.5128	0.3099
60°	I. 40688	0.7936	I. 2340	0.5127	0.3101
70°	I. 403 II	0.7865	I. 2317	0.5125	0.3104
80°	I. 39934	0.7794	I. 2294	0.5124	0.3106

$$
\left(a b-a b^{\prime}-b=-50.86\right)
$$

$\left(n_{\mathrm{G}^{\prime}}^{2}-\mathrm{I}\right) / d$.	$\left(n_{\mathrm{G}^{-1}}\right) / \boldsymbol{d}$.	$\left(n_{\mathrm{G}^{\prime}-\mathrm{I}}^{2}\right) /\left(n_{\mathrm{G}^{\prime}}^{2}+2\right) \boldsymbol{d}$.
I .2862	0.5276	0.3 I 63
I .2839	0.5275	0.3 I 66
I .28 I 5	0.5274	0.3 I 69
I .279 I	0.5273	0.3 I 7 I
I .2767	0.527 I	0.3 I 74
I .2744	0.527 O	0.3 I 77
I .272 I	0.5269	0.3 I 80
I .2697	0.5268	0.3 I 82

Benzyl Alcohol.

	n_{c}	d.	$\left(n_{c}^{2}-\mathrm{I}\right) / d$.	$\left(n_{c}-\mathrm{I}\right) / d$.	$\left(n_{c}^{2}-\mathrm{I}\right) /\left(n_{c}^{2}+2\right) d$.
10°	I .53979	I .054 I	I .3006	0.5 I 2 I	0.2975
20°	$\mathrm{I} .5355^{\circ}$	I .0466	I .2974	0.5 II 7	0.2977
30°	I .53 I 25	I .039 I	I .294 I	0.5 II 3	0.2979
40°	I .52697	I .03 I 6	I .2909	0.5108	0.298 I
50°	I .52269	I .024 I	I .2875	0.5104	0.2982
60°	I .5 I 842	I .0166	I .2843	0.5100	0.2983
70°	I .5 I 4 I 5	I .009 I	I .2810	0.5095	0.2984
80°	I .50987	I .0016	I .2777	0.509 I	0.2986

$\left(a b-a b^{\prime}-b=-220.4\right)$

$$
\left(a b-a b^{\prime}-b=-45.70\right)
$$

	n_{G}.
10°	I. 56809
20°	I. 56359
30°	I. 55909
40°	I. 55459
50°	I. 55009
60°	I. 54559
70°	I. 54109
80°	I. 53659

$\left(n_{\mathrm{G}^{\prime}}^{2}-\mathrm{I}\right) /$
$\left(n_{\mathrm{G}^{\prime}}-1\right) / d . \quad\left(n_{\mathrm{G}^{\prime}}^{2}-1\right) /\left(n_{\mathrm{G}^{\prime}}^{2}+2\right) d$.
I. 384
I. 3805
0.5389
0.3104
I. 3769
0.5385
0.3106
0.538 I
0.3108
I. 3734
0.5376
0.3109
I. 3698
o. 537 I
0.3 III
I. 3662
0. 5367
0.3 II 3
I. 3626
0.5362
0.3115
I. 3589
0. 5357
0.3 II7
$\left(a b-a b^{\prime}-b=-224.9\right)$

いーBUTYKIC ACID.

ACETYLACETONE.

In all these cases, the refractive power, no matter which formula is used, increases or decreases continuously with rising temperature. A discussion of other regularities will be deferred until data for more substances are at hand.

In conclusion, the molecular refractions for the C line as calculated according to Brüh1 ${ }^{1}$ using the expression ($\left.n_{c}^{2}-\mathrm{I}\right) /\left(n_{c}^{2}+2\right) \cdot \mathrm{M} / d(\mathrm{M}=$ molecular weight), are given together with the values found at 10° and 80°.

Ethyl Acetacetate.

In determining the refractive indices of ethyl acetacetate, it was found that the freshly distilled (under diminished pressure) substance gave different values from those obtained after the substance had been standing for some time. The difference is not large, but this observation was made repeatedly. The following series of determinations will show the general trend:

Substance Distilled Feb. 3, if:oo A.m.

	t.	C.	D.	F.	G^{\prime}
Feb. 3, 2:30 P.M.	18.0	1.41733	I. 41957	I. 42539	1.43043
Feb. 3, 2:45 P.M.	18.7	715	946	515	O13
Feb. 3, 3: 50 P.3.	20.2	655	889	460	I. 42943
Feb. 7, I: 20 P.M.	20.0	703	935	512	I. 43019
Feb. 7, I: 55 P.M.	19.6	720	953	52 I	or 8
Feb_ 8, 10: 30 A.M.	20.7	663	922	473	I. 42954
Feb. Io, Io: 45 A.M.	18.4	777	I. 42016	578	I. 43075
Feb. II, Io: $00 \mathrm{~A}, \mathrm{M}$.	20.6	693	I. 41927	495	I. 42999
Feb. 12, II: OO A.M.	21.0	672	906	481	971
Mar. 3, Io: 20 A.M.	19.9	705	940	508	I. 430

The ester was kept in the cup of the refractometer until February $\mathbf{1} 2$ th, and after that in a beaker covered with another beaker and exposed to the sun when possible, permitting free access to the air at all times, with only such variations in temperature occurring as took place in the laboratory. A study of these results show that there is a marked increase in the refractive index with the time, apparently reaching a maximum value. Attempting to reduce these results to the common basis of 20°,

[^4]which can only be done in an approximate manner using the temperature coefficients for $\mathrm{C}-0.00038, \mathrm{D}-0.0003^{6}, \mathrm{~F}-0.00032$, and G^{\prime} -0.00042, assuming the temperature coefficients to be the same at all times, which cannot be far wrong owing to the limited range of temperature, the following are obtained:

Time after distillation.	C.	D.	F.	G^{\prime}.
$3^{1 / 2}$ hours. .	I. 41657	I. 41885	I. 42475	I. 42959
$3{ }^{3} / 4$	665	899	473	958
4/6	663	896	466	951
98	703	935	512	I. 43019
99 "	705	939	508	OOI
120	690	947	495	I. 42983
168 "	716	958	527	I. 43008
191	717	949	514	025
216 "	710	942	513	OI 3
29 days.	7 OI	936	505	008

This table shows the change more clearly. For comparison the results obtained by $\mathrm{Brüh}^{1}$ at 20° are given:

$$
\mathrm{C}-\mathrm{I} .4 \mathrm{I} 72 \mathrm{O} ; \mathrm{D}-\mathrm{I} .41976 ; \mathrm{F}-\mathrm{I} .42532 ; \mathrm{G}^{\prime}-\mathrm{I} .43000 .
$$

Schaum ${ }^{2}$ found I .41937 for the D line at 20°.
A large number of determinations of the refractive index were made at higher temperatures, but they are of no use since the state of the substance at the time of making the measurements at any one temperature evidently depended upon the length of time the substance had been maintained at that temperature, as well as the temperature at which it had been maintained for some time previously. These conditions, or rather the effect produced by them, are entirely unknown quantities in these measurements, which must therefore be discarded.

An attempt can, however, be made to follow the change at 20°. There can be no decomposition of the substance taking place, since the change appears to stop after a certain point has been reached. The values of the refractive index right after the distillation (A) (the temperature of which did not rise above 85°), and after constant values have been attained (B) may be put equal to

	C.	D.	F.	G.
$\mathrm{A} \ldots \ldots \ldots \ldots \ldots \ldots$	I .4 I 65	I .4 I 88	I .4246	I .4295
$\mathrm{~B} \ldots \ldots \ldots \ldots \ldots \ldots$	I .4 I 7 I	I .4 I 94	I .425 I	I .43 O

The most obvious explanation of the change is that the equilibrium between the two tautomeric forms is different at high temperatures from what it is at lower, and that in cooling suddenly, as in condensation, the equilibrium at the lower temperature, is not attained at once but only

[^5]after some time. Traube ${ }^{1}$ found that the density of ethyl acetacetate 15 minutes after distillation was 1.02443 , and 20 hours later, .02467 , evidently a change exactly similar to the one described here. These densities as found by Traube are somewhat lower than those given by others, but since the change is the important factor, the comparative values will serve. For the density right after distillation, the value I .0244 will be taken, and after equilibrium is reached 1.0247 . The refractive powers then for the C line calculated from formulas II and III will be:

	$\left(n_{c}-1\right) / d$.	$\left(n_{c}^{2}-1\right) /\left(n_{c}^{2}+2\right) d$.
Immediately after distillation.	0.4066	0.2452
At equilibrium.	0.4070	0.2455

There is evidently a change in structure taking place, manifesting itself by the change in refractive power. The molecular refraction calculated according to Brühl would be 3 I .382 for the keto form and 32.545 for the enol form. From the above (last column) the molecular refraction is found to be 31.876 immediately after distillation and 3 I.915 at equilibrium, indicating that, at ordinary temperatures, very nearly equal amounts of the two isomers are present, while at higher temperatures, more of the keto form is present than at lower, the difference, however, being small. The matter cannot of course be considered settled satisfactorily as yet, owing to the more or less approximate nature of some of the data used, but the results given point to interesting possibilities.
phoenix Physical Laboratory, Columbia University,
September, 1908.
[Contributions from the Chemical Laboratory of Harvard College.]

ISO-OCTANE.

By Latham Clarke.
Received November 9,1908
In this paper are described the preparation and properties of iso-octane or 2-methyl heptane, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$, the study of which has been taken up in the continuation of a research on the octanes begun some time ago in this laboratory.

Iso-octane is the ninth hydrocarbon to be prepared in the series $\mathrm{C}_{8} \mathrm{H}_{18}$, of which there are eighteen possible members. A list of the nine octanes so far prepared is given herewith.

Normal octane, ${ }^{2} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$.
Iso-octane, or 2-methyl heptane, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$.
${ }^{1}$ Ber., 29, 1719 (1898).
${ }^{2}$ Riche, Ann. Chem. (Liebig), 117, 265. Schorlemmer, Ibid., 161, 280; 147, 227 ; 152, 152. Zincke, Ibid., 152, I5. Paterno and Peratoner, Ber. d. Chem. Ges., 22, 467.

[^0]: ${ }^{1}$ Ann. chim. phys. [8], 12, 145.

[^1]: ${ }^{1}$ Morgan and Higgins. 'Tilis Journal, 30, 105 s.

[^2]: ${ }^{1}$ Rec. trav. chim., 12, 157 (1893).
 ${ }^{3}$ Ann., 233, 255 (1886).
 ${ }^{2}$ J. pr. Chem., 3I, 5 II (I884).
 4 Ibid., 189, 2.

[^3]: ${ }^{1}$ Z. pr. Chem. [2], 50, I 19 (1894).
 ${ }^{2}$ I. Chem. Soc., 62, 844; 69, 3 .
 ${ }^{3}$ Ser., 37, 345 I (1904).

[^4]: ${ }^{1}$ The following values are used in calculating: Single-bonded $\mathrm{C}-2.365 ; \mathrm{H}$ -r.ro3; Hydroxyl O-r.506; Carbonyl O-2.328; N-3.02; Double bond - I. 836 . The benzene nucleus is assumed to have three double bonds.

[^5]: ${ }^{1}$ Ann., 203, 26 (1880).
 ${ }^{2}$. Ber., 3I, 1964 (1898).

